
Design and Implementation of an Intelligent USB
Peripheral Controller

Gianluca Valentino
Department of Communications and Computer

Engineering
University of Malta

Msida, Malta
gval0001@um.edu.mt

Saviour Zammit
Department of Communications and Computer

Engineering
University of Malta

Msida, Malta
saviour.zammit@um.edu.mt

ABSTRACT
This paper presents the design and implementation of an
intelligent, re-programmable device that is capable of au-
tomatically detecting USB peripherals on insertion and per-
forming various tasks accordingly. Examples include the au-
tomatic transfer of data between pen drives or the automatic
printing of a file located on a pen drive. The performance of
the system was analyzed and results for the execution time
and CPU utilization of the programs performing the tasks
were obtained. A comparison was made with the same pro-
grams running on a laptop, which was set as a benchmark.

Keywords
USB Controller, Automatic re-programmability, Data trans-
fer, Performance analysis

1. INTRODUCTION
There are various PC (Personal Computer) interfaces, the

most popular being USB (Universal Serial Bus), with thou-
sands of peripherals available for connection to PCs. How-
ever, it is necessary to have a PC to be able to access or
control these peripherals; the need of a user to transfer data
between two USB Mass Storage devices, or print an image
that has just been scanned, are such examples. In such cases,
a low-cost peripheral option is more desirable.

The concept of the Intelligent Peripheral Controller (IPC)
[12] is therefore that of a re-programmable device that can
detect connected USB peripherals and automatically per-
form an action accordingly, as shown in Figure 1. The ‘intel-
ligence’ of the device is derived from its ability to automati-
cally detect peripherals and re-program itself automatically
on the insertion of a pen drive containing the new software
to be installed, thus increasing the number of tasks it can
perform.

Research was conducted to identify any existing devices
which might already support the features of the IPC. USB
bridges such as the Belkin USB Anywhere and Hitch have
been identified [5]. Other devices that have some of the
functions contemplated include smart phones, multimedia
players and plug computers.

An online search for patents yielded a ‘Portable Selective
Memory Data Exchange Device’ [11], which acknowledges
the fact that “there is a need to transfer information from
on UFD (USB Flash Drive) to another UFD without the
presence of a computer”. The invention lacks an operating
system, and may be controlled by a set of simple user but-

Figure 1: The various peripherals that can be inter-
connected via the IPC

tons. Files are transferred depending on their file name, file
extension, file size, file location (such as if they are located
in a specific folder on the pen drive) or file status.

Existing methods for automatically re-programming em-
bedded systems tend to consider the updating of low-level
code (firmware), rather than high-level applications. Yao et
al. [13] maintain that as embedded devices are achieving
network connectivity, online-update of their software is be-
coming more of an issue. They present an extended form
of the normal boot loader. The new software is obtained
from a TFTP server, and is installed by writing it to flash
memory.

The risks involved in updating embedded system software
are discussed in [7]. In critical systems that have to run
continuously, stopping the system for an update is not the
ideal way to do things. The contribution made in [7] is the
design of a software framework in which an application pro-
gram can be updated ‘dynamically’ while running. However,
these issues should not be of much concern to the design of
the IPC, since the system would not be that critical.

Li et al. [9] have applied the automounting technique
to develop an automatic software install/update system for
Linux. They placed an executable shell script file into a
RPM package, which in turn was transferred to a USB Mass
Storage device. When the device was inserted into the em-
bedded system, it was mounted automatically, and the shell
script file was executed.

The few devices mentioned do not meet the low-cost and
re-programmable criteria of the IPC, which therefore moti-
vates this work. This paper is organized into three sections.
The first section discusses the design parameters and hard-



ware/software issues involved in setting up the system. An
overview of the system implementation is given in the sec-
ond section, and evaluation and testing results are provided
in the third section.

2. SYSTEM DESIGN

2.1 Hardware
A decision was made to opt for an ARM processor due to

its popularity in the design of embedded systems [1]. The
BeagleBoard [3] was chosen as the target board on which
to implement the IPC. Its features include an OMAP 3530
ARM Cortex-A8 based microprocessor (720 MHz), 256 MB
of RAM as well as a support for a substantial number of
peripherals, such as USB, HDMI, SD Card and audio con-
nectors.

2.2 Software
The design issues related to software include whether to

make use of an existing operating system, which program-
ming language to use for the implementation, and which
software tools could be used to develop and test the IPC.
A review of the existing literature showed that Linux is the
operating system of choice in embedded systems [10]. The
C language is ideal since it results in efficient, portable code,
and can easily provide access to the underlying hardware [6].

If the IPC is to be implemented on top of the Linux
OS, development and evaluation tools making up the GNU
toolset can be used. These include GCC (GNU Compiler
Collection), GDB (GNU Debugger), gcov (GNU source code
coverage) and gprof (GNU profiler). Other tools include
time and top, which can be used to analyze the execution
times and CPU utilization of the different programs respec-
tively.

3. SYSTEM IMPLEMENTATION
There are three stages involved in implementing the IPC:
(a) the set up of the Linux system;
(b) the design of the system software architecture;
(c) the writing of the programs making up the system.

3.1 Linux System Set-up
A Linux system generally consists of a boot loader, a ker-

nel and a root file system. The task of the boot loader is
to boot the Linux kernel at power-up, which in turn mounts
the root file system. Ubuntu was chosen as an embedded
Linux OS because of its wide support by the BeagleBoard
community.

The XLoader and Uboot boot loaders are pre-installed
in the BeagleBoard’s flash memory. The rootstock package
[2] was used to build a kernel and a root file system for
Ubuntu. Readily-compiled kernel images are available at
[4]. The 2.6.31.5-x5.3 kernel image version was selected for
its driver support for USB Wi-Fi and USB webcam.

The rootstock command was then executed in a termi-
nal on the host computer to obtain a Debian package. The
booting mechanism supported by the BeagleBoard is via SD
Card. A 8 GB SD Card was formatted to have two parti-
tions, the first of which is FAT32-formatted, while the second
partition is Ext3-formatted.

The boot script consisting of a number of instructions to
be executed by the boot loader, as well as a uImage file

Table 1: Software Package Components
File Naming Convention

Executable run by udev usb-backup
Executable source code usb-backup.c

Installation program usb-backup-installer
Installer source code usb-backup-installer.c

Program documentation usb-backup.txt

Table 2: Summary of IPC Functionalities
Functionality Peripherals involved Program Name
Data Backup USB Flash Drive usb-backup

USB Camera camera-backup
Data Transfer x2 USB Flash Drive usb-to-usb
Video Display USB Webcam webcam-display

HDMI screen
Printing USB Flash Drive usb-to-printer

USB Printer printer-config
Audio Speakers N/A

Internet Connection USB Wi-Fi Dongle wifi, wifi-config
Human Interface USB Mouse N/A

Device USB Keyboard N/A
Automatic Software USB Flash Drive auto-install

Installation

were loaded into the first partition. The uImage file was
generated by the mkimage tool, which takes the vmlinuz file
produced by rootstock as an input. The root file system (also
generated by rootstock) was extracted to the Ext3 partition.

3.2 IPC Software Architecture Overview
In order to implement the functionalities of the IPC, a

peripheral insertion detection mechanism is required. One
such mechanism is udev [8]. Its features include the abil-
ity to execute programs when certain device events occur
(such as insertion or removal), as well as allowing access to
information about currently attached devices. Thus, user
programs would not need to continuously poll the device for
any activity, and instead would be executed when required.

Therefore, the backbone of the system would be udev,
for which rules can be written for in order to automatically
run certain programs when certain peripherals are inserted.
Each and every feature of the IPC is defined by a software
application, and is installed to the IPC from a USB pen
drive. The standard format and naming conventions for ev-
ery software application is listed in Table 1, taking a pro-
gram named usb-backup (which backs up data on the pen
drive to the IPC) as an example.

These five files are compressed using tar and the gzip com-
pression utility into a single file, thus forming a software
package.

3.3 Program Implementation
A number of programs were written to implement a range

of functionalities which are determined by different combi-
nations of attached peripherals. For example, inserting two
pen drives would indicate that the user would like to transfer
data from one device to another. A summary of these pro-
grams and the respective peripheral combinations is given
in Table 2.

The initial software present on the IPC consists of the



mount-usb, auto-install and operation-ready programs, to-
gether with their corresponding udev rules located in the
/etc/udev/rules.d/10-IPC.rules file. The mount-usb pro-
gram is responsible for mounting a pen drive to a specific
mount-point, located in /home/ubuntu/Mount. A sub-directory
is created in this location with a name based on the file in
which the device appears in /dev, e.g. ‘sda’.

In order to keep production costs low, the current imple-
mentation assumes a device (such as the IPC) that is devoid
of any user interface, such as a screen. Since this denies the
user the option of manually selecting the new software to
be installed, the user is therefore constrained to place the
new software in a certain pre-established folder on the pen
drive. The insertion of the pen drive triggers udev, which
in turn runs the the auto-install program. This program
searches for and extracts any new software packages on the
pen drive to the /usr/local/temp directory on the board.
The software is determined to be ‘new’ by checking whether
a software package of the same name already exists in the
directory.

The various files listed previously in Table 1 are then
copied to directories in /usr/local, including ‘bin’ for the
new executable, ‘src/bin’ for the executable source code, and
‘docs’ for the program documentation. The new software
is then installed by executing the installer program, which
writes the appropriate udev rule to the rules file.

The task of the operation-ready program is to signal whether
the current operation has terminated correctly. Since it is
the last program to be executed, it is placed in a separate,
appropriately named rules file 20-IPC.rules, such that it is
parsed after the first rules file. If the program that has
been executed according to the combination of peripherals
inserted has terminated successfully, a speech output invites
the user to press the button twice to unmount all drives.
Once the unmounting process is over, the user is then in-
formed that the peripherals may be removed.

Other programs related to data transfer involving pen
drives include the usb-backup and usb-to-usb programs. The
first program creates a new directory with a concatenation of
the current date and time as a name in /usr/local/backups.
All files in the ‘Backups’ directory on the pen drive are
copied to the newly-created directory. Transfer of data be-
tween pen drives is achieved by the second program. In this
case, any files not already present in the ‘Transfer’ directory
of the second device to be inserted are transferred from the
‘Transfer’ folder of the first device.

The remaining features, such as the backup of data on a
camera, Wi-Fi connection, printing and webcam display are
provided by the camera-backup, wifi-config and wifi, printer-
config and usb-to-printer, and webcam-display programs re-
spectively. These programs make use of standard Linux
programs, such as gphoto2, wpa supplicant, hplip, lpr and
xawtv. If certain peripherals trigger multiple tasks, each
task will be performed sequentially according to its position
in the rules file.

4. EVALUATION AND TESTING RESULTS
The evaluation and testing of the system consisted of a

rigorous performance analysis of the various combination of
running programs to calculate the execution times and de-
termine the CPU utilizations of the programs. In addition,
a set of benchmarks were developed to compare the speed of
execution and CPU utilization of the programs on the IPC

Table 3: Files used to measure Execution Duration
File Type File Extension File Size

Image .jpg 6.3 KB (Small - S)
Document .pdf 5.5 MB (Medium - M)

Video .avi 697.8 MB (Large - L)

with the same parameters on a MSI EX600 laptop (also
running Ubuntu Karmic 9.10). The MSI EX600 laptop sup-
ports a 2 GHz Intel R© Core TM 2 Duo processor and 2 GB
of DDR2 RAM.

4.1 Performance Analysis of the IPC
The time taken for each program to complete its task was

determined using the time command, which is a standard
Linux utility. In the case of data transfer, a set of files
(listed in Table 3) differing in size and type were used to
measure the time taken to transfer them.

To determine the time taken to copy all the media stored
on a digital camera to the IPC, a typical scenario consisting
of 349 images and 26 video clips was considered. The time
utility contributed to a significant portion of the results, as
the choice whether to use the IPC instead of a PC to carry
out certain operations depends on the delays involved in
completing them.

Data related to the percentage of the CPU resources used
up by the programs were obtained using the top command.
In the cases of programs which complete in less than a sec-
ond, the CPU utilization was found to vary as much as 60%
for multiple runs.

4.2 Comparison in Performance between IPC
and Laptop

The raison d’être of the IPC is to replace the PC in per-
forming daily functions such as transferring of data between
peripherals. Thus, a way of testing the IPC’s efficiency
would be to set the execution times and CPU utilization of
the programs running on the standard PC as a benchmark,
and to asses the relative performance of the same programs
running on the IPC. The programs were all re-compiled on
the x86 PC, and were run with time and top. Figure 2 de-
picts the times for programs which take less than a second to
execute, while Figure 3 shows the timing results for the rest
of the programs. A comparison of the CPU utilizations for
some of the programs taking more than a second to execute
is shown in Figure 4.

The comparison in execution duration and CPU utiliza-
tion was made to establish whether it would be feasible from
a view-point of speed to implement the software technique
on a low-cost device which could support multiple features.
The results obtained show that the execution duration and
CPU utilizations for the implementation on the IPC is com-
parable or in some cases slightly worse than that for the
laptop. However, one has to consider the fact that there is
a difference of approximately a factor of 8 in the amount of
RAM and a factor of 2.8 in the CPU speed of the two types
of hardware.

5. SUGGESTIONS FOR FUTURE WORK
An idea for future work involves allowing for automatic

updates of the system software (Linux OS) on the insertion
of a pen drive, rather than only the application software.



Figure 2: Comparison of Execution Times (a)

Figure 3: Comparison of Execution Times (b)

Figure 4: Comparison of CPU Utilizations

This would facilitate the installation of drivers necessary for
new USB devices. Further suggestions relate to the provi-
sion of an online interface for users to download software
packages to their pen drives, as well as the possibility to
uninstall unneeded features.

6. CONCLUSION
The contribution of this work was the design and imple-

mentation of a low-cost dedicated device, termed as an “In-
telligent Peripheral Controller”. The current implementa-
tion runs a set of programs defining the various function-
alities of the system on top of a Ubuntu Linux operating
system, together with udev as a hardware detection mech-
anism. The system is re-programmable by means of a USB
pen drive, and its performance has been analyzed and found
to be comparable with that of a PC.

7. REFERENCES
[1] Arm press release, arm announces 10 billionth mobile

processor, http://www.arm.com/news/24403.html,
February 2009.

[2] Rootstock project web page,
https://launchpad.net/projectrootstock, March 2010.

[3] Beagleboard system reference manual rev c4,
December 2009.

[4] Index of 2.6.31.5 kernel,
http://rcn-ee.net/deb/kernel/beagle/
karmic/v2.6.31.5-x5.3/, March 2010.

[5] T. Balic. Transfer files from one usb device to another
without using a computer,
http://www.brighthub.com/computing/hardware/articles/
31630.aspx, December 2009.

[6] M. Barr and A. Massa. Programming Embedded
Systems with C and GNU Development Tools.
O’Reilly, 2 edition, 2006.

[7] M. Hicks and S. Nettles. Dynamic software updating.
ACM Transactions on Programming Languages and
Systems, 27(6), November 2005.

[8] G. Kroah-Hartman. udev - a userspace
implementation of devfs. In Proceedings of the Linux
Symposium, July 2003.

[9] T. Li and H. Pei-wei. Automatic software
install/update for embedded linux. Journal of
Shanghai Jiaotong University (Science), 13(1),
February 2008.

[10] C. J. Murray. Embedded linux extends its reach.
Design News, July 2009.

[11] I. Pomerantz. Portable selective memory data
exchange device, u.s. patent 2007/0065119, March
2007.

[12] G. Valentino. Design and Implementation of an
Intelligent Peripheral Controller. University Malta,
June 2010.

[13] G. Yao, W. Zhang, and J. Wang. The design and
implementation of online-update on embedded
devices. In IEEE International Conference on
Computer Science and Software Engineering, 2008.


